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Abstract

This study proposes a time-discontinuous Galerkin finite element method (FEM) for solving second-order ordinary
differential equations in the time domain. The equations are formulated using a particular integral boundary element
method (BEM) in the space domain for elastodynamic problems. The particular integral BEM technique depends only
on elastostatic displacement and traction fundamental solutions, without resorting to commonly used complex fun-
damental solutions for elastodynamic problems. Based on the time-discontinuous Galerkin FEM, the unknown dis-
placements and velocities are approximated as piecewise linear functions in the time domain, and are permitted to be
discontinuous at the discrete time levels. This leads to stable and third-order accurate solution algorithms for ordinary
differential equations. Numerical results using the time-discontinuous Galerkin FEM are compared with results using a
conventional finite difference method (the Houbolt method). Both methods are employed for a particular integral BEM
analysis in elastodynamics. This comparison reveals that the time-discontinuous Galerkin FEM is more stable and
more accurate than the traditional finite difference methods. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Particular integral BEM; Time-discontinuous FEM; Elastodynamics; Fundamental solution

1. Introduction

Many numerical techniques have been developed in recent decades to examine the behavior of elastic
solids subjected to dynamic loading. The most appropriate methods appear to be the finite element
method (FEM) and, more recently, the boundary element method (BEM). These methods have been
successfully applied to a wide class of problems in elastodynamics, such as wave propagation, vibration,
and soil-structure interaction. The BEM requires discretization of only the surface of the domain, but not
of its interior, in contrast to domain type methods, such as the FEM and the finite difference method.
Different boundary element procedures have been presented to deal with elastodynamic problems. Earlier
works concentrated on numerically formulating and solving the boundary integral equation in the fre-
quency domain using the Laplace transformation (Cruse, 1968; Cruse and Rizzo, 1968; Shaw, 1979).
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In this case, a numerical inverse transformation was required to bring the transformed solution back to the
original time domain (Manolis and Beskos, 1981). Niwa et al. (1975, 1976) derived another solution for
transient problems using the Fourier transformation and the frequency domain BE formulation. The time
domain solutions of the problem were then evaluated using the BEM in conjunction with conventional
step-by-step time integration schemes (Cole et al., 1978; Niwa et al., 1980). More recently, Nardini and
Brebbia (1982, 1985) developed a more efficient BE formulation (dual reciprocity BEM formulation) for
free vibration analysis; later, Ahmad and Banerjee (1986) also derived BEM for free vibration analysis
with particular integrals. Herein, the accuracy and efficiency in the solution of realistic engineering
problems with the Ahmad and Banerjee method (1986) were superior to the Ahmad and Banerjee
method. However, Polyzos et al. (1994) established the equivalence of the dual reciprocity BEM to the
particular integral BEM. These two procedures are preferred over previous ones, because the BE equation
is cast in the same form as that of dynamic equilibrium equations in finite element analysis. Therefore, the
extensive experience in finite element dynamic analysis can be confidently used. Moreover, it is far more
straightforward than the time domain BEM formulation, because using a time-independent elastostatic
fundamental solution very much simplifies the BEM solution process (Dominguez, 1993). Agnantiaris
et al. (1998) recently applied the dual reciprocity BEM to elastodynamic problems in 3-D cases. In their
study, the second-order ordinary differential equations or dynamic equilibrium equations, formulated
by the dual reciprocity BEM or the particular integral BEM, were solved using traditional step-by-step time
integration algorithms. Very recently, the traditional time-domain BEM formulation (Mansur et al.,
1998) was employed for scalar wave propagation analysis in which a procedure to consider linear time-
discontinuous interpolation for boundary flux was worked out. Such a formulation must use time-de-
pendent fundamental solutions which originated from time and space Dirac delta functions in infinite
domains.

Most finite element procedures for the dynamic analysis of continuous models are traditionally based
on semidiscretizations: finite elements are used only in space, to reduce the partial differential equations to
a system of second-order ordinary differential equations in time. These are the governing equations for
discrete models known as the semidiscrete equations of structural dynamics. The semidiscrete equations
are further solved by means of the modal superposition method or the step-by-step time integration
methods (finite difference discretizations in time). Over the past decades, many efficient algorithms for the
step-by-step integration of equations of structural dynamics have been developed. Among these, the
second-order accurate and implicit methods, such as the method of Houbolt (1950), the method of
Newmark (1959), the Wilson-0 method (Wilson et al., 1973), and the HHT-« method (Hilber et al., 1977),
are most frequently used in practice. Many researchers have attempted to use finite elements in the time
domain (Argyris and Scharpf, 1969; Fried, 1969; Oden, 1969). Based on Hamilton’s principle for dynamics
and using continuous weighting functions in time, space-time finite element formulations were derived. This
often leads to a coupled matrix system in which variables at all time levels must be solved simultaneously.
In practice, procedures of this kind have been used rarely, due to their prohibitively high cost. Actually, by
multiplying the structural dynamic equations with weighting functions and integrating over time intervals,
traditional ordinary differential equation algorithms have been re-derived by Zienkiewicz and Taylor
(1991).

Another finite element approach in the time domain is based on a discontinuous Galerkin (DG) method.
According to this method, the unknown fields are permitted to be discontinuous at the discrete time levels.
The DG method has been successfully applied to first-order hyperbolic problems (fluid mechanics) and
parabolic problems (transient heat conduction) (Johnson et al., 1984; Johnson, 1987; Thomée, 1984).
Hughes and Hulbert (1988) first applied this new approach to the area of structural dynamics. They
demonstrated that the DG method possesses considerable potential not present in the traditional semi-
discrete methods. In particular, it leads to stable, higher-order accurate solution algorithms to solve or-
dinary differential equations, and is capable of filtering out the effect of spurious high modes. Very recently,
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Li and Wiberg (1996) applied the DG method to 2-D structural dynamic problems. They dealt with the
specific DG method that uses piecewise linear interpolations for both displacements and velocities, i.e., the
P1-P1 two-field formulation (Hulbert, 1992). This type of element has the advantage over other DG ele-
ments with respect to the computational effort needed and its stability and convergence properties
(Johnson, 1993; French, 1993).

In this study, 2-D elastodynamic problems are analyzed by BEM using particular integrals in a spatial
domain. Since the dynamic equilibrium equation formulated by BEM using particular integrals is similar to
that in dynamic FEM analysis, the use of the time-discontinuous Galerkin finite element method is applied
to solve dynamic equilibrium equations of the system. Numerical results using the proposed approach and
the commonly used Houbolt method (Nardini and Brebbia, 1985) to solve elastodynamic problems are also
compared.

2. Boundary element formulation using particular integrals

Consider an elastic solid enclosed by a boundary surface. The equations of motion expressed in terms of
the displacement field in the absence of body force are as follows:

(A4 wujyj + puiy; = pii;, W

where / and p are Lame’s constants, p is mass density, and ii; are acceleration components. The comple-
mentary functions and particular functions are denoted by uf and u!, respectively. Hence,

(4 + sy + iy = 0, 2)
(i + ﬂ)”ﬁij + /WE/,- = pii;. (3)

The acceleration components are represented in the following form:

oo

in(x) = Y Culx, ") @u(&"), “)

m=1

where x and &" are the coordinates of field point and source point, respectively, @, is a fictitious density,
and Cy is a known function that can be selected as any linear function of spatial coordinates. A simple
function for Cjy is selected as follows:

Ci = (R —71)dy, (5)
where R is the largest distance between two points of the solid, r is the distance between x and &.
Eq. (4) can also be expressed in the following matrix form:
ii = PO, (6)
or
® = Vi, (7)

where ¥ = P~'. By substituting Eq. (4) into Eq. (3), we can choose a particular solution as

o0

up (x) = ZDik(xa &) (E") (8)

m=1

in which Dy (x, &) is a known function in terms of R, r, u, and p indicated in Ahmad and Banerjee (1986).
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Eq. (8) can be written in a matrix form as follows:
u’ = DD. 9)

According to the strain—displacement and the stress—strain relationships, the particular function for the
corresponding surface traction is determined by

$(x) = iw, ")y (&) (10)

in which T (x, &") is also a known function in terms of R, r, u, p and n; indicated in Ahmad and Banerjee
(1986).
Eq. (10) can also be written in a matrix form as follows:

¢ =T (11)

By usual discretization of boundary, the corresponding static boundary integral equation of Eq. (2) in a
matrix form becomes

Hu® = G¢°. (12)
Hence, the exact solutions of Eq. (1) becomes

%=§+%, (13)

up=u; +u;.
By substituting Eq. (13) into Eq. (12), we obtain

H{u—u"} = G{q - ¢"}. (14)
By substituting Eqgs. (7), (9) and (11) into Eq. (14), we obtain

{GT — HD}Vii + Hu = Gq (15)
or

Mii+ Hu = Gq, (16)

where the mass matrix M = {GT — HD}V.

Notably, the pattern of Eq. (16) resembles that of the dynamic equilibrium equation using FEM. To
solve Eq. (16), variables of nodal points at the boundary I",, where the displacements are prescribed, are
identified by the subscript “a”, and the remaining boundary points on I'4, by the subscript “f”, where the
tractions are specified. Hence, Eq. (16) can be rewritten as follows:

Mmﬁl + Maﬁﬁ/j + flwum + ﬁa/juﬁ = qu“ + Gﬂgqﬁ, (17)
My, + Myging + Hyu, + Hyguy = Gig, + Gipq. (18)
From Eq. (17), ¢, can be expressed in the following form:

oo

q, = G_I(Mwild + Maﬁﬁﬁ + ilmua + Hxﬁuﬂ — Gxﬁqﬁ)- (19)
By substituting Eq. (19) into Eq. (18), we can obtain

Miig + Hug = Mii, + Hu, + Gqy, (20)
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where

H = Hy, — G, G

oo

"Gy,
G= Gy — GG, H,p,
M = G;,G,'M,, — My,
H = G;,G,'H,, — Hy,.
On the right-hand side of Eq. (20), all the physical variables are prescribed and we can rewrite Eq. (20) in
the compact form (Nardini and Brebbia, 1985)
Mii+ Hu = F, (21)

where M is the equivalent mass matrix, H is the equivalent stiffness matrix, and F is the equivalent load
vector. The known boundary conditions are given by

ui(x,t) =u;(x,t), xe I, and q(x,1) =q,(x,t), x €T}y (22)

with I', Ul =1, I',N Iy = ¢, where u; is the prescribed displacements on I', and g; are the prescribed
tractions on I'g. Meanwhile, the initial conditions are given by

ui(x,0) =up(x), x€ Q and u(x,0) =vy(x), x € Q, (23)

where x is in the domain of the solid.

Once the previous boundary and initial conditions are introduced, the system of equation (21) can be
solved using any one of the existing step-by-step time integration approaches, such as the Houbolt method,
the Newmark method, the Wilson-0 method, or the HHT-a method. This study employs a time finite ele-
ment approach or a time-discontinuous Galerkin method, which uses piecewise linear interpolation func-
tions for both displacements and velocities. It is worth pointing out that the influence matrices H and G in
Eq. (12) contain the evaluations of strong- and weak-singular integrals, respectively, which are the same as
those of the elastostatic fundamental solutions (Brebbia et al., 1984; Banerjee, 1994).

3. Time-discontinuous Galerkin finite element formulation

Egs. (21) and (23) can be rewritten in the compact form:
Mv+ Hu—F =0,

H(ii—v)=0. (24)

Consider a partition of the time domain, /= (0,7), having the form: O0=# <t <---<
ty <ty < -+ <tyy = T. Let the time steps A¢, = t,.1 — t, and I, = (¢,,,+1). Make the following specific
choice of the time finite element space:

yh = {w” € U(P‘(In))"e“}, (25)

where P! denotes the first-order polynomial, and each member of V" is a vector consisting of 7., linear
functions on each time step 7,. All trial displacements and velocities and their corresponding weighting
functions are chosen from the space V". Notably, the functions in ¥ may be discontinuous at the discrete
time levels #,. To account for this, we introduce the notation,
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wh = lirg}w(t,, +¢), (26)
w, = li%lw(tn +e). (27)

Note that the functions are continuous over each time interval but allow jumps at the discrete time levels ¢,.
The weak formulation of the time-discontinuous Galerkin finite element in a typical time step 1, = (,, t,.1)
with respect to Eq. (24) can be expressed as follows:

Find U" = {u",v"} € V" x V" such that for all W" = {w},wh} € V" x V", and let

R= [WALU = F)dr+ [ Wl HLU e wl(6]) - H I (0)] +w4(0)) - M0)] =
I,

I

n=1,...,N, (28)

where
L, U" = Mv" + Hu", (29)
LU =" — " (30)

It has been shown that the above time-discontinuous Galerkin finite element method using the P1-P1 two-
field formulation element is unconditionally stable and of third-order accuracy (Hulbert, 1992, 1994).

In the following, we present an iterative solution algorithm to obtain the solutions for the resulting
system of equations from Eq. (28). Considering a typical time step I, = (¢,,%,.1), let #; and v, denote the
nodal displacements and velocities at ¢}, respectively, and #, and v, the nodal displacements and velocities
at ¢, respectively. Also, let #; and v] represent the nodal displacements and velocities at 7, respectively,
which are determined from either the previous step’s calculations or, if » = 1, the initial data. Thus, the
displacements and velocities at an arbitrary time ¢ € (4,,4,,1) can be expressed as follows:

W' (1) = ¢y (O + ¢y (D, (31a)

V(1) = i (v + dy(1)va, (31b)

where ¢,(¢) = (t,41 — t)/At, and ¢,(¢) = (¢t — t,) /At,, i.e., the P1-P1 element is defined for the displacement
and velocity fields (Hulbert, 1992, 1994). By substituting Eq. (31) and their corresponding weighting
functions into Eq. (28), and performing the integration explicitly, one can obtain the following matrix
equation as follows:

H H  —At,H —AtH (u Hu;
17;H IH  —IAt,H —iAt,H w | 0 Ry (32)
§At,,H %Ath %M %M 41 F, +MV1
éAth %Al’nH —%M %M V) F,
where
F, :/I¢>1(t)th, F2:/1¢>2(t)th. (33)

Solving Eq. (32) is a non-trivial task, because this equation is coupled and four times larger than the
original equation (21). An iterative predictor/multi-corrector algorithm is designed to decrease the com-
putational cost (Li and Wiberg, 1996). We first recast the system as follows:
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H 0 —lAt,H At,H u, Hu;
0 H —jAt,H —At,H | |u | | Huy (34)
0o 0 M M v ) F
0 0 APH M v, F;
where
M =M +1AH, (35)
F; =3(F + Mv;) — \F, — 2At,Huy, (36)
F; =F, + F, + My, — At,Hu; (37)

are the effective mass matrix and force vectors. Clearly, the third and fourth rows in Eq. (32) have been
partially decoupled from the first and second ones, and they can be solved separately as follows:

M IM|[vw)|_[F;
[;AtgH M*Hvz}—{pg ' (38)

If initial predictor values of v, and v, are given, for instance, the chosen being v;, Eq. (38) is solved iter-
atively for the corrected values of v; and v,, until the required accuracy is obtained. In the numerical ex-
amples, an accuracy requirement of ¢ = 107¢ is specified, and the iteration process is performed until
e = ||(WF —vk), (W51 — k) || is met. Then, the first row in Eq. (34) is used for determining #; and the second
one for determining u,. The above solution algorithm is summarized in Table 1, which demonstrates that
the implementation of the DG method is not complex. Notably, this table adopts the accelerated Gauss—
Seidel iteration scheme with the factor of acceleration w, which is known as the successive over-relaxation
(or SOR) method. The SOR method can effectively reduce the iterative time of the computation when
solving the linear system of equations. This procedure is superior to that described in the article by Li and
Wiberg (1996) (using the Gauss—Jacobi iteration method).

4. Numerical examples

Three numerical examples concerning the transient responses of 2-D elastic bodies are presented. In this
study, three-noded quadratic elements are employed for the BEM in the space domain, and two-noded
linear elements are adopted for the FEM in the time domain. The traction discontinuity at the corner is
modeled through the use of double nodes. One is refered to Brebbia et al. (1984) or Banerjee (1994) for
further details regarding numerical implementation. In order to improve the accuracy, internal points can
be introduced in the BEM formulation (Nardini and Brebbia, 1982). Numerical results are compared with
those obtained by other numerical methods (the Houbolt method or FEM) and/or with exact solutions, to
assess the stability and the accuracy of the proposed method.

Example 1. The first problem in this example concerns a rectangular plate subjected to an end tensile
traction of a time-dependent Heaviside type as depicted in Fig. 1(a) and (b). The material properties are
Poisson’s ratio v =0, shear modulus u = 40 kPa, and mass density p = 1.0 kg/m>. The boundary element
discretization consists of 12 elements, and five internal points are uniformly distributed in the space
domain. The time histories of the vertical displacement at point A are obtained and compared with the
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Table 1
Solution algorithm of the DG method

a. Data input and initialization:

uy =uy
Vi ="
t=0

b. Form effective mass matrix and perform factorization:
M =M +APH

c. Time integration:
(1) Form generalized force vectors:

F; =(5F, + 5Mv; — F, — 2AtHu; )
F,=F,+ F, + My, — AtHu;

(2) Predictor:

vy =y
V) =V,
i=0

(3) Multi-corrector:

MY = {FT - (%M)vé”]

v(lz‘+1) >: viiﬂ) + (1 _ w)v(li) ‘
M*v(z'“) = w{F; — (%AtzH)v(l‘)]
v(ziﬂ) _ vgiﬂ) + (1 _ a))vg)
i=i+1

If £€> ¢ go to (3)

(4) Output solution:
Vi ="
uy —uy +%(v1 +)
t—t+ At
If t < T go to (1), else stop

(a) (b)
P(t)
A T
P(t)

im (kN/m)

1
B

PT’l 0 t (sec.)

Fig. 1. (a) A rectangular plate subjected to an end tensile traction and (b) the time history of a Heaviside-type traction.



C.-C. Chien, T.-Y. Wu | International Journal of Solids and Structures 38 (2001) 289-306 297

(@
1.4E-4
1.2E-4
E  1.0E4
=
2 B8.O0E5
8
2 6.0E5
Z
= 4.0E5
=1 i
2 2.0E-5 7
0.0E+0 &
-2.0E-5 | I |
0.0 0.1 0.2 0.3 0.4
Time (sec.)
(b)
1.2E-4
1.0E-4 - No error
8.0E-5 Houbolt
6.0E-5
T 40E5 -
§ 2085 ) Ny A /A 7 /F" //‘4\
B 0.0E+0 pRPRaASARAALTSAA AN AN |
ST A YV VLWL W
-2.0E-5 ! -~ N )
-4.0E-5
-6.0E-5
-8.0E-5 ! I |
0.0 0.1 0.2 0.3 0.4
Time (sec.)

Fig. 2. (a) Vertical displacement and (b) error distribution, at point A of a rectangular plate under a tensile traction with = 1.0.

exact solution and the solution using the Houbolt method. Also, the time histories of the error distri-
butions in the numerical solution, i.e., DG or Houbolt solution — exact solution, are obtained. The results
for three different step sizes f = 1.0, 1.5 and 2.0 (i.e., f = CpAt/L, where Cp is the P-wave velocity, At,
the time step, and, L, the distance between the nearest nodes) are displayed in Figs. 2-4, respectively.
According to these figures, the DG method provides much more accurate solutions than the Houbolt
method. Specifically, the Houbolt method introduces more amplitude decay and period elongation than
the DG method. Notably, a very accurate solution can be obtained by the DG method with a fairly big
step size, a result which the Houbolt method cannot achieve. The time histories of axial stress at point B
presented in Figs. 5-7 further prove that the DG method provides better results than the Houbolt
method.

Example 2. The second problem in this example concerns a rectangular plate subjected to an end tensile
traction of a triangular time variation, as depicted in Fig. 8(a) and (b). The material properties are
Poisson’s ratio v=0, shear modulus u =40 kPa, and mass density p=1.0 kg/m®. The boundary element
discretization consists of 24 elements, and 10 internal points are uniformly distributed in the domain. The
time histories of the vertical displacement at point A are obtained and compared with the exact solution
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Fig. 3. (a) Vertical displacement and (b) error distribution, at point A of a rectangular plate under a tensile traction with = 1.5.

and the solution using the Houbolt method. The time histories of the error distributions in the numerical
solution, i.e., DG or Houbolt solution — exact solution, are obtained. The results for three different step
sizes f=1.0, 1.5 and 2.0 are displayed in Figs. 9-11, respectively. In addition, the time histories of axial
stress at point B are presented in Figs. 12-14. According to these figures, the DG method still offers
much more accurate solutions than the Houbolt method. It is observed that, even with big step sizes
compared with the Houbolt method, the DG method follows the exact solution fairly well as obtained in
Example 1.

Example 3. In the final example, a rectangular plate is subjected to an end flexural traction of a triangular
time variation, as depicted in Fig. 15(a) and (b). The material properties are Poisson’s ratio v=0.3, shear
modulus p =40 kPa, and mass density p = 1.0 kg/m>. The boundary element model is the same as that of
Example 1, and five internal points are also employed in the analysis. The exact solution for such a
problem is unavailable and hence the DG solution for the time histories of horizontal displacement at



C.-C. Chien, T.-Y. Wu | International Journal of Solids and Structures 38 (2001) 289-306 299

(a)

1.4E-4

Exact
1.2E4 A Houbolt

1.0E-4 | O ne

8.0E-5 N

T
BT

6.0E-5

|>'>'>l>
> P
Py

S

4.0E-5 -

co P

'>'>'>|>>
|>'>'>l>
|>,>l>l>l>
Poy L

2.0E-5

Vertical displacement (m)

0.0E+0

-2.0E-5 : : :
0.0 0.1 0.2 0.3 0.4
Time (sec.)

1.2E-4
1.0E-4 —
8.0E-5 —
6.0E-5 —
4.0E-5 —
2.0E-5 —
0.0E+0
-2.0E-5 —
-4.0E-5 —
-6.0E-5 —

-8.0E-5
0.0 0.1 0.2 0.3 0.4
Time (sec.)

No error

Houbolt

Error (m)

Fig. 4. (a) Vertical displacement and (b) error distribution, at point A of a rectangular plate under a tensile traction with = 2.0.
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Time (sec.)

Fig. 5. Axial stress at point B of a rectangular plate under a tensile traction with = 1.0.
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Fig. 8. (a) A rectangular plate subjected to an end tensile traction and (b) the time history of a triangular time variation traction.
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Fig. 7. Axial stress at point B of a rectangular plate under a tensile traction with f = 2.0.
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Fig. 9. Vertical displacement at point A of a rectangular plate under a triangular time variation traction with = 1.0.
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Fig. 10. Vertical displacement at point A of a rectangular plate under a triangular time variation traction with ff = 1.5.

point A is compared with the FEM solution and the Houbolt method. The results for three different step
size f=1.0, 1.5 and 2.0 are displayed in Figs. 1618, respectively. The differences between the results from
the DG and the Houbolt methods are found to be small. However, the results of the DG method more
accurately approach the FEM solution than the Houbolt method, at three peaks of the displacement
curve.
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Fig. 11. Vertical displacement at point A of a rectangular plate under a triangular time variation traction with = 2.0.
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Fig. 12. Axial stress at point B of a rectangular plate under a triangular time variation traction with = 1.0.

5. Conclusions

The BEM using particular integrals is presented to analyze the transient problems of two-dimensional
elastic solids. By utilizing the particular solutions of the governing differential equation, a surface-only
integral equation is derived, and only the elastostatic fundamental solution is used rather than a frequency
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Fig. 13. Axial stress at point B of a rectangular plate under a triangular time variation traction with = 1.5.
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Fig. 14. Axial stress at point B of a rectangular plate under a triangular time variation traction with f = 2.0.

or time-dependent fundamental solution. Since the resulting system matrix resembles the corresponding
FEM matrix, extensive experience in finite element dynamic analysis can be confidently employed. The
BEM system matrix in the time domain is solved using a time-discontinuous Galerkin FEM. The numerical
examples presented indicate the applicability of these BEM techniques for the solution of elastodynamic
problems. Numerical results further indicate that the solution technique based on a discontinuous time
finite element procedure is computationally more stable and more accurate than the solution procedure
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Fig. 15. (a) A rectangular plate subjected to an end flexural traction and (b) the time history of a triangular time variation traction.
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Fig. 16. Horizontal displacement at point A of a rectangular plate under a flexural traction with = 1.0.

based on the commonly used Houbolt step-by-step time integration algorithm. The present analysis can be
easily extended to 3-D problems involving time-dependent or dynamic responses.
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Fig. 17. Horizontal displacement at point A of a rectangular plate under a flexural traction with f = 1.5.
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Fig. 18. Horizontal displacement at point A of a rectangular plate under a flexural traction with = 2.0.
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